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Abstract

Clouds in satellite imagery pose a significant challenge for downstream applica-1

tions. A major challenge in current cloud removal research is the absence of a2

comprehensive benchmark and a sufficiently large and diverse training dataset.3

To address this problem, we introduce the largest public dataset — AllClear for4

cloud removal, featuring 23,742 globally distributed regions of interest (ROIs) with5

diverse land-use patterns, comprising 4 million images in total. Each ROI includes6

complete temporal captures from the year 2022, with (1) multi-spectral optical im-7

agery from Sentinel-2 and Landsat 8/9, (2) synthetic aperture radar (SAR) imagery8

from Sentinel-1, and (3) auxiliary remote sensing products such as cloud masks9

and land cover maps. We validate the effectiveness of our dataset by benchmarking10

performance, demonstrating the scaling law — the PSNR rises from 28.47 to 33.8711

with 30× more data, and conducting ablation studies on the temporal length and the12

importance of individual modalities. This dataset aims to provide comprehensive13

coverage of the Earth’s surface and promote better cloud removal results.14

1 Introduction15

Satellite image recognition enables environmental monitoring, disaster response, urban plan-16

ning [Pham et al., 2011, Wellmann et al., 2020], crop-yield prediction [Doraiswamy et al., 2003],17

and many more applications, but is held back significantly due to occlusion by clouds. Roughly 67%18

of the Earth’s surface is covered by clouds at any given moment [King et al., 2013]. The limited19

availability of cloud-free captures is especially problematic for time-sensitive events like wildfire20

control [Kyzirakos et al., 2014, Thangavel et al., 2023] and flood damage assessment [Rahman and21

Di, 2020]. Consequently, developing effective cloud removal techniques is crucial for maximizing22

the utility of remote sensing data in various domains.23

A major challenge holding back research into cloud removal is the lack of comprehensive datasets24

and benchmarks. A survey of publicly available datasets for cloud removal (Table 1) reveals several25

problems. First, most existing datasets are sampled from a small set of locations and thus have26

limited geographical diversity [Ebel et al., 2020, Huang and Wu, 2022, Ebel et al., 2022], impacting27

both the effectiveness of training and the rigor of evaluation. Second, many existing datasets filter28

out very cloudy images (e.g., more than 30% cloud coverage), thus preventing trained models from29

tackling practical situations with extensive cloud cover [Sarukkai et al., 2020, Requena-Mesa et al.,30

∗Lead authors. Correspondence to : Hangyu Zhou hz477@cornell.edu, Chia-Hsiang Kao ck696@cornell.edu

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.



Dataset Regions # ROIs # Images Satellites

STGAN [Sarukkai et al., 2020] Worldwide 945 3,101 Sentinel-2
Sen2_MTC [Huang and Wu, 2022] Worldwide 50 13,669 Sentinel-2
EarthNet2021 [Requena-Mesa et al., 2021] Europe 32,000 960,000 Sentinel-2
SEN12MS-CR [Ebel et al., 2020] Worldwide 169 366,654 Sentinel-1/2
SEN12MS-CR-TS [Ebel et al., 2022] Worldwide 53 917,580 Sentinel-1/2

AllClear Worldwide 23,742 4,354,652 Sentinel-1/2, LandSat-8/9

Table 1: Summary of publicly available cloud removal datasets.

2021] (Figure 1). Third, some existing benchmarks use ground-truth cloud-free images captured31

at a very different time point from the time the input images are captured [Sarukkai et al., 2020,32

Ebel et al., 2022]. This means that many changes may have occurred on the ground between the33

capture of the input and the target images, introducing noise in the evaluation. Finally, existing34

datasets incorporate a very limited set of sensors/modalities (i.e., Sentinel-2), limiting the information35

available to models for faithful cloud removal.36
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Figure 1: Left: Geographical distribution of AllClear ROIs; middle: land cover distribution of AllClear for
training and testing set; right: cloud coverage distribution of the entire AllClear dataset.

To address these limitations and facilitate future research in cloud removal, we introduce the largest37

and most comprehensive dataset to date, AllClear. To ensure sufficient coverage of the planet’s38

diversity, AllClear includes 23,742 regions of interest (ROIs) scattered across the globe with diverse39

land cover patterns, resulting in four million multi-spectral images. AllClear includes data from40

three different satellites (i.e., Sentinel-1, Sentinel-2, and LandSat-8/9) captured over a year (2022) at41

each ROI, allowing models to better interpolate missing information. We use this dataset to create42

a more rigorous sequence-to-point benchmark with more temporally aligned ground truth. Finally,43

besides the enormous amount of raw satellite images, we also curated a rich set of metadata for44

each individual image (e.g., geolocation, timestamp, land cover map, cloud masks, etc.) to support45

building future models for the cloud removal challenge as well as to enable stratified evaluation.46

We evaluate existing state-of-the-art on AllClear and find that existing models are undertrained;47

training on our larger and more diverse training set significantly improves performance. We also48

find that models that use the full suite of available sensors as well as a longer temporal sequence of49

captures perform much better. Taken together, our contributions are:50

• We introduce to-date the largest dataset for cloud removal, as well as a comprehensive and51

stratified evaluation benchmark,52

• We demonstrate that our significantly larger and more diverse training set improves model53

performance, and54

• We show empirically the importance of leveraging multiple sensors and longer time spans.55

2



2 Background56

2.1 Existing Cloud Removal Datasets57

Advances in cloud removal research for satellite imagery have led to the development of several58

datasets with unique characteristics and limitations. STGAN introduced two cloud removal datasets59

and established the multi-temporal task format of using three images as input [Sarukkai et al., 2020].60

However, the dataset discards all image crops with more than 30% cloud cover, leading to only61

3K images. Following STGAN, Huang and Wu [2022] find that the annotations in STGAN can be62

incorrect and propose Sen2_MTC with four times more images. The Sen_MTC dataset first samples63

50 tiles globally and proceeds to divide the large tile into pieces, restricting the sampling regional64

diversity. STGAN and Sen_MTC also do not describe their data processing levels (e.g., level-1C65

Top-of-Atmosphere or level-2A Surface Reflectance imagery), making it hard to compare models66

trained on different datasets. Different from the STGAN and Sen2_MTC datasets, the SEN12MS-CR67

dataset features synthetic-aperture radar (SAR) images to augment the optics imagery. However,68

it has a single image pair per data point. The successor is SEN12MS-CR-TS [Ebel et al., 2022],69

featuring multi-temporal (multiple images per location) multi-modality paired images. For each70

location, 30 Sentinel-1 and Sentinel-2 images from 2018 are temporally aligned and paired to form71

spatiotemporal patches. However, the temporal differences between the two modalities can be as72

large as 14 days, and the temporal difference between the input and the target can be as large as a73

year, resulting in noise in the evaluation. In addition, the authors construct a sequence-to-point cloud74

removal task in which images from this dataset with more than 50% cloud coverage are excluded.75

EarthNet2021 [Requena-Mesa et al., 2021] also provides sequences of carefully curated Sentinel-276

images with a spatial resolution of 20m and bands of RGB and Infrared. However, the dataset77

excluded spatiotemporal patches with high cloud coverage and is thus not an ideal dataset for cloud78

removal.79

2.2 Cloud Removal Methodology80

Early work on cloud removal used a conditional GAN to map a single image to its cloudless version81

conditioning on the NIR channel [Enomoto et al., 2017] or SAR images [Grohnfeldt et al., 2018].82

These early attempts fall short of generalizing to real cloudy images [Ebel et al., 2020, Stucker83

et al., 2023]. Singh and Komodakis [2018] and Ebel et al. [2020] improve this setup by using a84

cycle-consistency loss. Other approaches learn the mapping from SAR images to their corresponding85

multi-spectral bands [Bermudez et al., 2018, 2019, Wang et al., 2019, Fuentes Reyes et al., 2019].86

More recently, with the advent and rise of transformers, multi-head attention modules have been87

introduced for cloud removal tasks. Yu et al. [2022] casts the cloud as image distortion and designs a88

distortion-aware module to restore the cloud-free images. Zou et al. [2023a] utilized multi-temporal89

inputs along with a multi-scale attention autoencoder to exploit the global and local context for90

reconstruction. Ebel et al. [2023] also adopts a multi-temporal inputs and attention autoencoder but91

also proposes to estimate the aleatoric uncertainty of the prediction, which controls the quality of92

the reconstruction for risk-mitigation applications. Jing et al. [2023], Zou et al. [2023b] proposed93

to utilize diffusion training objective for cloud-free image generation where the inputs only rely on94

the optimal images and SAR imagery is not taken into consideration. Similarly but more generally,95

Khanna et al. [2023] proposed a generative foundation model for satellite imagery, but is not tailored96

for the cloud removal task.97

3 Dataset98

3.1 Regions-of-Interest Selection99

We choose our ROIs to satisfy two objectives: (a) coverage of most of the land surface and (b) a100

balanced sampling of land cover types. This balanced sampling in particular ensures that smaller but101

more popular locations like cities are as well represented as the large swathes of wilderness. To get102

these ROIs, we follow a two-step procedure: curating a pool of ROI candidates and then building103
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train/benchmark subgroups balanced across land cover types, as shown in Figure 1. This ensures104

both the benchmark and the training sets contain a sufficient amount of data representing various land105

cover types.106

For curating the ROI pool, unlike previous work that followed random ROI selection [Sarukkai107

et al., 2020, Huang and Wu, 2022, Ebel et al., 2020, 2022, Xu et al., 2023], we use grid sampling to108

select an ROI every 0.1°latitude and every 0.1°cos(θ) longitude, where θ is the latitude, from 90°S109

to 90°N. The intuition behind this approach is that the same 0.1°longitude can represent 11.1 km at110

the equator and 4.35 km at 67°latitude. This weighting provides a simple yet effective method for111

not over-sampling high-latitude areas. By excluding ocean areas using the GeoPandas package, we112

select a total of 1,087,947 ROIs.113

Next, we select ROIs from the pool to achieve a more balanced dataset over land-cover use while114

considering the natural imbalance of land cover distribution on the earth’s surface. We leverage the115

land cover data from the Dynamic World product [Brown et al., 2022] from Google Earth Engine,116

which is a 10-meter resolution Land Use / Land Cover (LULC) dataset containing class probabilities117

and label information for nine classes: water, tree, grass, flooded vegetation, crops, shrub and scrub,118

built, bare, and snow and ice. Specifically, we calculate the all-year median of the LULC in 2022119

as an estimate for the land use and land cover for each ROI. We iteratively select ROIs from the120

candidate pool such that the average land cover for all classes (except snow and ice) is greater than121

10 percent in the benchmark set and 5 percent in the train set.122

Finally, for a fairer comparison with models trained on previous datasets, we take an additional123

measure to exclude the ROIs that are close to the SEN12MS-CR-TS dataset [Ebel et al., 2022].124

Specifically, the size of tiles in the SEN12MS-TR-CS dataset is 40 × 40 km2. So we exclude the125

ROIs in AllClear that are within a 50 km radius of the ROIs in SEN12MS-CR-TS.126

3.2 Data Preparation127

AllClear contains three different types of open-access satellite imagery made available by the Google128

Earth Engine (GEE) platform [Gorelick et al., 2017]: Sentinel-2A/B [Drusch et al., 2012], Sentinel-129

1A/B [Torres et al., 2012], and Landsat 8/9 [Williams et al., 2006]. For Sentinel-2, we collected all130

thirteen bands of Level-1C orthorectified top-of-atmosphere (TOA) reflectance product. For Sentinel-131

1, we acquired the S1 Ground Range Detected (GRD) product with two polarization channels (VV132

and VH). All the raw images in AllClear were resampled to 10-meter resolution. We follow the133

default GEE preprocessing steps during all the downloading process. In addition, we include the134

Dynamic World Land Cover Map for all the Sentinel-2 imagery [Brown et al., 2022]. For each135

selected ROI, our goal is to collect all 2.56 × 2.56 km2 patches in 2022 with a spatial resolution136

of 10 meters. We adopt the Universal Transverse Mercator (UTM) coordinate reference system137

(CRS), following Ebel et al. [2020, 2022], Zhao et al. [2023], which divides the Earth into 60 zones,138

each spanning 6 degrees of longitude, to ensure minimal distortion, especially along the longitude139

axis. Since satellite imagery is often captured in large tiles that do not necessarily conform to the140

boundaries of UTM zones, gaps (NaN values) can occur where the tile data does not cover the entire141

ROI. In such cases, we exclude all images containing NaN values to maintain data quality.142

Data Preprocessing. For Sentinel-1, following Ebel et al. [2022], we clip the values in the VV143

channel of S1 to [−25; 0] and those of the VH channels to [−32.5, 0]. For Sentinel-2 and Landsat144

8/9, we clip the raw values to [0, 10000] [Ebel et al., 2022, Huang and Wu, 2022]. The values are145

then normalized to the range of [0, 1].146

Cloud and Shadow Mask Computation. The cloud and shadow masks are indispensable to147

this dataset as they are used for guiding evaluation metric computation by masking out regions148

where there are clouds and shadows in the target images. To obtain the cloud mask, we use the149

S2 Cloud Probability dataset available on Google Earth Engine. This dataset is built by using150

S2cloudless [Zupanc, 2017], an automated cloud-detection algorithm for Sentinel-2 imagery based151

on a gradient boosting algorithm, which shows the best overall cloud detection accuracy on opaque152
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clouds and semi-transparent clouds in the Hollstein reference dataset [Hollstein et al., 2016, Skakun153

et al., 2022] and the LCD PixBox dataset [Paperin et al., 2021, Skakun et al., 2022].154

As for the shadow mask, ideally the cloud shadows can be estimated using the sun azimuth and155

cloud height but the latter information cannot be obtained. We therefore proceed with curating the156

shadow mask following documentation in Google Earth Engine [jdbcode, 2023]. The shadow is157

estimated by computing dark pixels and projecting cloud regions. For the dark pixels, we use the158

Scene Classification Map (SCL) band values from Sentinel-2 to remove water pixels, as water pixels159

can resemble shadows. We then threshold the NIR pixel values with a threshold of 1e-4 to create a160

map of dark pixels. Finally, we take the intersection of the dark pixel map and the projected cloud161

regions to obtain the cloud shadow masks.162

3.3 Benchmarking Task Setup and Evaluation163

For evaluation, we construct a sequence-to-point task using our AllClear dataset with train, validation,164

and test splits of 278,613, 14,215, and 55,317 samples, respectively. Each instance contains three165

input images (u1, u2, u3), a target clear image (v), input cloud and shadow masks, target cloud and166

shadow masks, timestamps, and metadata such as latitude, longitude, sun elevation angle, and sun167

azimuth. Sentinel-2 images are considered the main sensor modality, while sensors such as Sentinel-1168

and LandSat-8/9 are auxiliary. Unlike previous datasets, we do not threshold the cloud coverage in169

the input images Sarukkai et al. [2020], Requena-Mesa et al. [2021], Ebel et al. [2022]. We also170

provide multiple options for cloud and shadow masks with different thresholds for users to use.171

We address two temporal misalignment problems found in previous datasets: misalignment between172

source and target images (where the difference can be months apart) and misalignment when pairing173

main sensors with auxiliary sensors (where the difference can be at most two weeks) [Ebel et al., 2022].174

To avoid temporal misalignment issues, the target clear images are chosen from four consecutive175

spatial-temporal patches. In particular, the time stamps of the input and target images are either in the176

order [u1, v, u2, u3] or in the order [u1, u2, v, u3]. This ensures that the target image does not include177

any novel or unseen changes that occurred after the capture of the cloudy images. For auxiliary178

sensors, we select the auxiliary satellite images within a two-day difference from the respective179

Sentinel-2 images. We fill the corresponding channels with ones if no auxiliary sensor images match180

are available. More details about the construction of these inputs and targets is in the supplementary.181

Note that our target images may still have some clouds (since it is difficult to get a cloud-free182

image within each time span). To reach a balance between having diverse scenarios and limit metric183

inaccuracy, we set target images to have less than 10% cloud and shadow (combined) coverage and184

exclude the cloudy pixels when calculating the metrics. We modified various pixel-based metrics to185

compute only over the cloud-free areas. We adopt the following metrics common in cloud removal186

literature: mean absolute error (MAE), root mean square error (RMSE), peak signal-to-noise ratio187

(PSNR), spectral angle mapper (SAM), and structural similarity index measure (SSIM).188

4 Experiments189

We next evaluate the usefulness of our dataset for both evaluation and training.190

4.1 Benchmarking prior methods on the AllClear test set191

Selection of SoTA model architecture. For a fair comparison between datasets, we choose among192

the SoTA models for comparison. Specifically, we choose prior state-of-the-art models that are193

pre-trained on SEN12-MS-CR-TS for the benchmark because AllClear and SEN12-MS-CR-TS are194

both Top-of-Atmosphere imagery and contain all the bands of Sentinel-2. Notably, other previous195

datasets such as STGAN and Sen2_MTC are excluded because the pre-processing methodology196

and imagery production type are not explicitly mentioned, making direct deployment of previous197

models on the AllClear dataset unfair and not comparable. Therefore, we exclude models such as198

CTGAN [Huang and Wu, 2022], PMAA [Zou et al., 2023a], and DiffCR [Zou et al., 2023b] which use199
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these datasets to train. Instead, we choose UnCRtainTS model [Ebel et al., 2023], a sequence-to-point200

model, and U-TILISE [Stucker et al., 2023], a sequence-to-sequence model, both pre-trained on201

the SEN12MS-TR-CS dataset and public available, for our experiments. For this evaluation, all202

models receive three images as input. Specifically, they receive both Sentinel-2 and Sentinel-1 images203

concatenated along the channel dimension.204

Results. The benchmark results are shown in Table 2. We first notice that simple baselines least205

cloudy and mosaicing perform well on the dataset. UnCRtainTS performs slightly better than these206

simple baselines in terms of SSIM and SAM. On the other hand, the U-TILISE model falls short of207

reaching the performance of the simple baselines. Since U-TILISE is a sequence-to-sequence model,208

we adopt it for sequence-to-point evaluation by choosing the image from the output sequence with the209

lowest MAE score as the model output. Notably, the training of U-TILISE involves adding sampled210

cloud masks to the cloud-free images as inputs, and it is trained to recover the original cloud-free211

sequence. The model is evaluated in a similar manner. The distribution disparity between the sampled212

cloud masks and the real clouds may contribute to the low score of U-TILISE in the real scenario.213

The good performance of least cloudy and mosaicing is intriguing. We conjecture that part of the214

reason may be that in AllClear, the temporal gap between input images and target images is smaller,215

so simply averaging or choosing from the input images is likely to yield good results.216

Table 2: Benchmark performance of previous SoTA models evaluated on our AllClear benchmark dataset. The
best performing values are in bold and the second best is underlined.

Model Training Dataset PSNR (↑) SSIM (↑) SAM (↓) MAE (↓)
Least Cloudy - 28.864 0.836 6.982 0.078
Mosaicing - 29.824 0.754 23.58 0.045

UnCRtainTS [Ebel et al., 2023] SEN12MS-CR-TS 29.009 0.898 5.972 0.039
U-TILISE Stucker et al. [2023] SEN12MS-CR-TS 24.660 0.807 7.765 0.083

Failure cases. To understand the performance of the state-of-the-art better, we visualize the output217

images generated using the state-of-the-art model UnCRtainTS [Ebel et al., 2023], which was trained218

on the SEN12MS-CR-TS dataset [Ebel et al., 2022]. In Figure 2, we evaluate the pre-trained model219

on AllClear testing cases where it receives three cloudy images as input. Overall, we observe three220

primary failure modes in the model’s performance: (1) The model fails to draw from clear input221

images, particularly when the other two images are cloudy. This issue may arise because the model222

was trained exclusively on images with less than 50% cloud coverage, as noted by the authors [Ebel223

et al., 2023]. (2) The model often struggles to recover the correct color spectrum, even when the input224

images are mostly clear. We hypothesize that this is due to the relatively small dataset size, leading to225

a lack of generalization ability. (3) The model frequently fails to generalize to snow-covered land.226

We speculate that this is due to insufficient sampling of diverse snowy regions during training.227

4.2 Training on AllClear228

Table 3: Benchmark Performance for UnCRtainTs models retrained on AllClear.

Evaluation Dataset Training Dataset
(fraction used)

PSNR (↑) SSIM (↑) SAM (↓) MAE (↓)

SEN12MS-CR-TS SEN12MS-CR-TS 27.838 0.866 9.455 0.036
AllClear (3.4%) 26.256 0.847 10.411 0.041

AllClear SEN12MS-CR-TS 29.009 0.898 5.972 0.039
AllClear (3.4%) 28.474 0.906 6.373 0.036

We next evaluate the benefits of training on AllClear. For this purpose, we use UnCRtainTS229

given its good performance on prior benchmarks. To evaluate if there is any domain difference230

between AllClear and the previous SEN12MS-TR-CS dataset, we first run an equal-training-set-size231

comparison. We train UnCRtainTS on a subset of AllClear that is of the same size as the the training232
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Figure 2: Failure case from UnCRtainTS [Ebel et al., 2023], a previous SOTA model trained on the SEN12MS-
CR-TS [Ebel et al., 2022] cloud removal dataset.

set size used in UnCRtainTS training, which is 10,167 data points. We also follow the training233

hyperparameters as in the original paper to avoid extra tuning. As shown in Table 3, when both234

models are evaluated on AllClear (i.e., the bottom two rows in Table 3), we observe that UnCRtainTS235

models pre-trained on both datasets have comparable results across the four metrics. This suggests236

that there is no noticeable domain difference between the two datasets.237

Scaling with AllClear. We next evaluate how much we can scale UnCRtainTS using the large238

training set available with AllClear. Specifically, we curate a dataset of various scale using random239

sampling from the training dataset while evaluating on the same validation set. Table 4 shows the240

results. We find that more training data clearly improves accuracy significantly across all metrics,241

resulting in a more than 10% improvement in PSNR. Figure 5 shows that with a larger dataset242

the model is able to better remove clouds and better preserve the color. This suggests that cloud243

removal models trained on past datasets are in general undertrained and AllClear’s large training set244

is extremely useful to help the models fit the data better.245

Table 4: Scaling law of our model on our AllClear datasets with UnCRtainTS as backbone architecture.

Fraction of Data # data point PSNR (↑) SSIM (↑) SAM (↓) MAE (↓)
1% 2,786 27.035 0.898 5.972 0.039
3.4% 10,167 28.474 0.906 6.373 0.036
10% 27,861 32.997 0.923 6.038 0.023
100% 278,613 33.868 0.936 5.232 0.021

4.3 Stratified evaluations246

We use the available land-cover type labels in AllClear to conduct a stratified evaluation across247

land-cover types (Figure 3). We generally find that both PSNR and SSIM metrics are much worse248

for both water bodies and snow cover. Water bodies have transient wave patterns, and snow cover is249

also often transient, which may explain the difficulty of predicting these classes. Snow may also be250

confused with cloud.251

Following past work [Ebel et al., 2022], we also perform a stratified evaluation of accuracy relative to252

the extent of cloud cover and shadows (Figure 5). For cloud cover, generally performance decreases253
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Figure 3: Land cover stratified evaluation of models trained with different fractions of the AllClear dataset: 1%,
3.4%, 10%, and 100%.
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Figure 4: Cloud removal quality measured by PSNR (left column) and SSIM (right column) at different cloud
and shadow coverage levels. The top row represents models trained on the full AllClear dataset, and the bottom
row represents models trained on the SEN12MS-CR-TS dataset.

with cloud percentage, which is expected. Training on a larger dataset (AllClear) substantially254

improves accuracy for low and medium cloud cover, but not for fully clouded regions. Note that255

the striped pattern is because of fully cloudy images as explained in the Appendix. Shadows are256

generally less of a problem, and shadow percentage seems to be uncorrelated with performance.257

4.4 Effect of various temporal spans258

We next use our benchmark to see whether the common practice of using 3 input images is sufficient.259

We compare two models, one using 3 images and the other using all 12 images captured at that260

location. Both models are trained on a 10k subset of AllClear. The results, shown in Table 5, suggest261

that in fact a longer timespan significantly improves accuracy. Future cloud removal techniques262

should therefore consider longer timespans.

Table 5: Effect of different temporal length.

# Consecutive Frame as Input PSNR (↑) SSIM (↑) SAM (↓) MAE (↓)
3 28.474 0.906 6.373 0.036
12 30.399 0.919 5.920 0.028
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Figure 5: Scaling the training dataset by ten-folds gives better qualitative results.

5 Conclusion263

This paper has introduced AllClear, the most extensive and diverse dataset available for cloud removal264

research. The larger training set significantly advances state-of-the-art performance. Our dataset also265

enables stratified evaluation on cloud coverage and land cover, and ablations of the sequence length266

and sensor type. We hope that future research can build on this benchmark to advance cloud removal,267

for instance by exploring the dynamics between SAR and multispectral images.268
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• Did you include the license to the code and datasets? [Yes] See Section ??.390

• Did you include the license to the code and datasets? [No] The code and the data are391

proprietary.392
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Checklist section does not count towards the page limit. In your paper, please delete this instructions395
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contributions and scope? [Yes] See Section 4399
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(c) Did you discuss any potential negative societal impacts of your work? [No]401

(d) Have you read the ethics review guidelines and ensured that your paper conforms to402
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(b) Did you include complete proofs of all theoretical results? [N/A]406
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